Free Malcev algebra of rank three
نویسندگان
چکیده
منابع مشابه
Enveloping algebras of the nilpotent Malcev algebra of dimension five
Pérez-Izquierdo and Shestakov recently extended the PBW theorem to Malcev algebras. It follows from their construction that for any Malcev algebra M over a field of characteristic 6= 2, 3 there is a representation of the universal nonassociative enveloping algebra U(M) by linear operators on the polynomial algebra P (M). For the nilpotent non-Lie Malcev algebra M of dimension 5, we use this rep...
متن کاملUniversal enveloping algebras of the four-dimensional Malcev algebra
We determine structure constants for the universal nonassociative enveloping algebra U(M) of the four-dimensional non-Lie Malcev algebra M by constructing a representation of U(M) by differential operators on the polynomial algebra P (M). These structure constants involve Stirling numbers of the second kind. This work is based on the recent theorem of Pérez-Izquierdo and Shestakov which general...
متن کاملMalcev-Neumann series and the free field
After reviewing some aspects of Cohn’s theory of the free field, we give another proof of a theorem of Lewin: the subfield of rational elements in the field of Malcev-Neumann series on the free group is isomorphic to the free field.
متن کاملAutomorphisms of a Free Associative Algebra of Rank 2. I
Let Ä<2> = R that keeps (xy — yx) fixed (up to multiplication by an element of R), then . This follows from a more general result about endomorphisms of Ä...
متن کاملThe Simple Non-lie Malcev Algebra as a Lie-yamaguti Algebra
The simple 7-dimensional Malcev algebra M is isomorphic to the irreducible sl(2,C)-module V (6) with binary product [x, y] = α(x ∧ y) defined by the sl(2,C)-module morphism α : Λ2V (6)→ V (6). Combining this with the ternary product (x, y, z) = β(x∧y) ·z defined by the sl(2,C)-module morphism β : Λ2V (6)→ V (2) ≈ sl(2,C) gives M the structure of a generalized Lie triple system, or Lie-Yamaguti ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2014
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2014.01.033